Boolean nested canalizing functions: A comprehensive analysis
نویسندگان
چکیده
Boolean network models of molecular regulatory networks have been used successfully in computational systems biology. The Boolean functions that appear in published models tend to have special properties, in particular the property of being nested canalizing, a concept inspired by the concept of canalization in evolutionary biology. It has been shown that networks comprised of nested canalizing functions have dynamic properties that make them suitable for modeling molecular regulatory networks, namely a small number of (large) attractors, as well as relatively short limit cycles. This paper contains a detailed analysis of this class of functions, based on a novel normal form as polynomial functions over the Boolean field. The concept of layer is introduced that stratifies variables into different classes depending on their level of dominance. Using this layer concept a closed form formula is derived for the number of nested canalizing functions with a given number of variables. Additional metrics considered include Hamming weight, the activity number of any variable, and the average sensitivity of the function. It is also shown that the average sensitivity of any nested canalizing function is between 0 and 2. This provides a rationale for why nested canalizing functions are stable, since a random Boolean function in n variables has average sensitivity n 2 . The paper also contains experimental evidence that the layer number is an important factor in network stability.
منابع مشابه
On canalizing Boolean functions
Boolean networks are an important model of gene regulatory networks in systems and computational biology. Such networks have been widely studied with respect to their stability and error tolerance. It has turned out that canalizing Boolean functions and their subclass, the nested canalizing functions, appear frequently in such networks. These classes have been shown to have a stabilizing effect...
متن کاملStratification and enumeration of Boolean functions by canalizing depth
Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively “picked off”, until a non-canalizing function remains. In this paper, w...
متن کاملPhase transition of Boolean networks with partially nested canalizing functions
We generate the critical condition for the phase transition of a Boolean network governed by partially nested canalizing functions for which a fraction of the inputs are canalizing, while the remaining non-canalizing inputs obey a complementary threshold Boolean function. Past studies have considered the stability of fully or partially nested canalizing functions paired with random choices of t...
متن کاملMultistate nested canalizing functions
The concept of a nested canalizing Boolean function has been studied over the course of the last decade in the context of understanding the regulatory logic of molecular interaction networks, such as gene regulatory networks. Such functions appear preferentially in published models of such networks. Recently, this concept has been generalized to include multi-state functions, and a recursive fo...
متن کاملBounds on the Average Sensitivity of Nested Canalizing Functions
Nested canalizing Boolean functions (NCF) play an important role in biologically motivated regulatory networks and in signal processing, in particular describing stack filters. It has been conjectured that NCFs have a stabilizing effect on the network dynamics. It is well known that the average sensitivity plays a central role for the stability of (random) Boolean networks. Here we provide a ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 481 شماره
صفحات -
تاریخ انتشار 2013